Converting Waste into a National Treasure

 

 

(L-R) Eng. Khalid Al-Emadi, Manager of Quality, Safety & Environment, Department Public Works Authority (Ashghal), Dr Mohammed bin Saif Al-Kuwari, Under Secretary Laboratories and Standardization Affairs, Ministry of Environment, Dr. Khaled Hassan, and Osman El Hussien Mohammed, Quality Researcher,Quality Safety & Environment Dept.,Public Works Authority

(L-R) Eng. Khalid Al-Emadi, Manager of Quality, Safety & Environment, Department Public Works Authority (Ashghal), Dr Mohammed bin Saif Al-Kuwari, Under Secretary Laboratories and Standardization Affairs, Ministry of Environment, Dr. Khaled Hassan, and Osman El Hussien Mohammed, Quality Researcher,Quality Safety & Environment Dept.,Public Works Authority

While working for Bloomsbury Qatar Foundation Journals’ QScience media organization from 2011 to 2016, we served QNRF as a publisher of their newsletter. Although credits have not been assigned, I researched, interviewed and wrote this article, and it exists in the QNRF newsletter archives, linked directly before the following text. Researchers and organizations will attest to my work if contacted. 
— Emily Alp

ARCHIVE. In a matter of two decades, Doha’s skyline has gone from flat and tan to a jagged skyscraping forest of gleaming metal and concrete structures. Construction continues to boom across Qatar, yet it imports so many construction materials—also known as ‘aggregate’—that the projects are unusually expensive. A research team funded by QNRF and based in Qatar is on track to challenge the current supply practices and radically cut costs while maintaining quality and saving massive amounts of energy used to import heavy materials.

“What we are trying to do is convert waste into an asset and then inform the government here to give them an understanding of how this works,” said Dr. Khaled Hassan, General Manager of TRL Ltd., Qatar Science Technology Park, who is the Lead Principal Investigator (LPI) on a project to test the quality of re-processed waste material in new construction projects, including buildings, roads and other infrastructure.

“We are trying to achieve a major cost saving—converting materials from waste that’s expensive to dispose of, into an asset that generates a potentially huge income. We are also thinking more green, more environmentally, in terms of reuse and energy savings.”

The first phase of the project involved reviewing the supply chain—i.e., identifying main waste materials with potential use in construction. Dr. Hassan said that the majority of the waste comes from construction sites. The two main waste zones within the construction field are excavation waste, and construction and demolition waste. In all cases, huge amounts of material are generated and automatically considered waste.

“It’s important to consider that it’s only human for people to look at something and if you tell them it’s a waste material they will think it is low quality,” he said. “Based on this first reaction, they just reject the material and don’t think about how they can use it again.”

From the first phase of the project, Dr. Hassan uncovered a potential goldmine of resources. In Qatar today, there are around 100 million tons of construction waste material that could be reused.

“Based on 2012 consumption of imported aggregate, that [100 million tons] can supply Qatar for five years,” he said. “So what we are seeing is, in terms of availability, this could be very beneficial to the construction industry.”

Dr. Hassan earned his PhD at Leeds University in the UK and worked there for 12 years as an academic before joining TRL. He felt a strong pull to apply the knowledge he had gained over the years and made the leap into applied research. It’s projects like these—where he can practically apply research and connect the academic and industrial communities in a shared goal—that erase any doubt in his mind that he made the right decision.

“We need to benefit from this research, and that’s why it’s my love. When I formed the project team, I gathered together the main stakeholders, including Qatar Standard for the important implementation of the project’s outcomes, and Qatar University, for the academic side of the work. When we are successful, we can all help to improve construction specifications and practices.”

Dr. Hassan is especially interested in sharing the findings as widely as possible so that if the results of his research prove positive, they will transform the construction industry across the country. The research is moving along and has now entered the testing stage.


The second phase of the process involved construction of model buildings made from different types of alternative aggregate materials. Three buildings were constructed—one made with conventional imported aggregate and local washed sand and two made with different types of alternative ‘aggregate’ materials. The buildings are now finished and according to the research schedule will be tested over a year to understand their behavior in Qatar’s environmental conditions over time.

“I’m not saying that waste material is top quality,” Dr. Hassan explained. “I’m saying that in our research, we are demonstrating that with appropriate processing of construction waste, it could be used in the highest value application of structural concrete. And we know that if it works in the highest value application, it will definitely work in lower value applications.”

Qatar Standard, part of Qatar’s Ministry of Environment, is not only a project partner but also a stakeholder with whom Dr. Hassan shares decision-making power on this project. Additionally, he has assembled an advisory board including representatives from aggregate suppliers, concrete suppliers, consultant agencies, and clients. He divided the project into tasks and invites stakeholders to meetings before tasks begin so that he’s working from multiple insights.

“I just want to make sure that the project outcomes are practical and could be easily implemented,” he explained. “We have a very good link with the construction industry including Ashghal, Qatar Rail and Qatar 2022. The information we are generating is not confidential. The main idea is to help people cross a barrier so that we can work with standards and potentially accept and approve alternative aggregate materials that would benefit everyone here in Qatar.”

In the end, Dr. Hassan said it’s exciting and important to work on a project that is based entirely in Qatar. The newly constructed test building site is in Doha, directly across from the Ashghal Center for Research and Development. It will be used to test these materials as the weather bears down on them. In addition to the model buildings, several road safety barriers, concrete soak away segments and blocks have been made from the recycled aggregate and are now exposed to outdoor conditions. They will be subject to testing over the coming year.

“I can make this material in the lab and it would be a fantastic experiment, but would it survive in Qatar’s environmental conditions—in summer, winter, the heat, the salt, the humidity? The lab cannot replicate actual conditions. A real environmental assessment can’t be done over one year. It has to be done over a long time. But within the current project, we will monitor this for one year to begin to see how it reacts through the summer and winter. We will also consider long-term monitoring at the end of the project,” he said.

 

Samples taken from concrete to test

Samples taken from concrete to test

 

Of all of the potential impacts this project could have, Dr. Hassan said the economic benefits would be the most obvious. For now, all quality aggregate is imported from the UAE; he said that the price of shipping and buying material could be cut by 75 percent if the supply-demand loop is closed within Qatar. The second most obvious will be in terms of environmental benefits associated with waste disposal and energy savings.


“Qatar’s landfill sites hold approximately 100 million tons,” he explained. “That’s a lot already; and then what are we going to do? The projections show that a lot more waste will be generated, so we need to think more sustainably.”

In the end, Dr. Hassan credits QNRF not only for its financial support but also because of the vision its executives have maintained when supporting projects like these:

“I would like to thank QNRF for sponsoring such a project. They have been very keen about the implementation of research and the outcomes. I changed my career because of this. As an academic I feel that people should benefit from what I do. I moved from academia into applied research abroad, here to Qatar, to apply what I’ve learned. I’m delighted to see that QNRF is moving in this direction, because this is what we need for continuous development of the country. You can do your own research and keep on applying it, revising it and improving it.”

For more information about this project, see this edition's video podcast.

Optics Research in Qatar Gaining Traction and Entering Collaborative Phase

Lasers running through a medium

Lasers running through a medium

While working for Bloomsbury Qatar Foundation Journals’ QScience media organization from 2011 to 2016, we served QNRF as a publisher of their newsletter. Although credits have not been assigned or retained, I researched, interviewed and wrote this article, and it exists in the QNRF newsletter archives. It is linked out to the archives directly before the following text. Researchers and organizations will attest to my work if contacted. 
— Emily Alp

ARCHIVE. Compared to studies in the fields of biology and engineering, nonlinear dynamics might not be so obvious in terms of its worth. In reality, it is an area of physics research that permeates the natural world and a field integral to so many others. Dr. Milivoj Belic won the 2012 QNRF Research Team of the Year Award for his prolific contributions in this field, accounting for more than ten percent of Texas A&M at Qatar’s publications. His team’s specific focus is nonlinear optics, wherein they research the behavior of materials and laser light as they interact.

“What we do is manipulate photons, which are particles of light that can also be considered waves,” Dr. Belic said, “and we consider processes that happen in material when you shine laser light on them. So in essence we play with the wave phenomena. This is under the umbrella of quantum mechanics, but we do not do quantum mechanics; we do nonlinear optics.”

In linear optics photons do not “talk to” each other; however, in nonlinear optics they do, through the medium. Understanding the conversations—through the evolving language of nonlinear equations, i.e., nonlinear dynamics—helps researchers understand the material under study.

“In physics, very few things are done and finished once and for all, at least what has been done within the last century,” Dr. Belic said. “Most of those things are a never-ending story. Bit by bit you discover new things. But the problems and topics of research are there … an immense number of unsolved questions and half-baked answers.”

By running lasers through different types of materials such as gases, photo-refractive crystals, and nematic liquid crystals, Dr. Belic and his team observe the entire system as the light propagates, to get an idea of the material's response and the processes at play. The equations describing these processes are linked to waves and light and also with the response of the material—so it is both the response of the material and the behavior of the laser light, together, that are studied.

“We attack nonlinear equations; so it’s a mathematical physics problem. Now with such equations, it’s not like ‘aha, that’s it, we solved it!’—most often, it cannot be solved, at least not analytically. You have to try something different. Still, for many such equations we found ways to treat them analytically and this is something for which my team is becoming known internationally.”

The mathematical language around many physical phenomena is based on differential equations. A classic example would be the Schrödinger equation, which describes how the state of a quantum system changes over time. This is useful in linear systems and quantum mechanics. However, Dr. Belic explained that nonlinear dynamics is even more challenging than quantum mechanics. Specifically, it involves nonlinear Schrödinger equations and relies heavily on computers to crunch numbers because the responses in nonlinear systems are sometimes so erratic, evading analysis through the equations used in more predictable systems. Interestingly, most natural systems and materials require nonlinear thinking.

“Laws of physics are laws of nature,” Belic explained. “You have to master them and you have to know how to apply them. Mathematics is the language of nature. Things in nature are best explained through mathematics. Physics is essentially applied mathematics. In theoretical physics, you have to reason. But then you have experimental physics, so you have to experiment—to make a model, make predictions and test them. This can also turn out the other way around, where somebody finds something experimentally and then explains it.”

Whereas research in many fields is goal or product oriented, Dr. Belic said his team’s research is often curiosity-driven. A co-evolution of experiment and theory, the research requires a constant striving into the unknown.

“We are always trying to understand things, to contribute to a bank of understanding about nature at the basic level,” Dr. Belic explained. “We don’t produce gadgets—we want to know how they work. Here in Qatar, we had to start from scratch, so we started with theory. Some of our experiments are performed in other places such as Australia, the US, Serbia, France and Germany … we have a lot of collaborators.

“This work could contribute to other fields, not tomorrow, not today but in the foreseeable future,” he continued. “Newton formulated his laws in mathematical terms, and at the time people were asking ‘what is this for?’ It was a hundred years before people realized how useful they were.”

What excites Dr. Belic now is the potential to collaborate with researchers in other fields, enriching findings with the basic knowledge of physics and properties of materials.

“Before, physicians were doing their thing, mathematicians were doing their thing, chemists were doing their thing, and that approach was disjointed. But now we realize that if you want to make progress in brain research you cannot do so by the medical profession alone. For example, one of my collaborators is making a mathematical model of a brain cancer tumor. We all have to work together and that is the idea. And that is really the push nowadays with the funding agencies. Our team would like to go and collaborate with the Qatar Foundation institutes and has begun discussions with many of them.”

Establishing homegrown teams that are capable of producing great research requires a long period of cultivation. Qatar Foundation and TAMUQ have chosen this path and have generously supported the creation of high-quality team-oriented research centers. This turns the spotlight toward Qatar Foundation and TAMUQ as well as the whole Middle Eastern region. We greatly appreciate the strong support we have been given by TAMUQ and QNRF, and look forward to a bright future,” Dr. Belic said.

NPRP 25-6-7-2
Nonlinear Photonics for All-optical Telecommunication and Information Technologies.